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INTRODUCTI ON

The stress distribution in gun tubes is generally computed by
using the classical L-am, solution for thick walled cylinders.
Thermal stresses are calculated for temperature distributions that
are assumed to be logarithmic [W.j This approach does not allow for
consideration of the effects of changes in cross section nor for the
condition that the internal pressure is applied over a limited and
changing region of the tube. Neither does it permit the considera-
tion of transient temperature distribution that may occur in a
firing cycle [2]. The effects of non-uniformn conditions along the
axis and a traasient temperature distribution changes the problem
from the classical one dimensional problem of Lame" to a problem in
two dimensions that does not in general have an analytical solution.

An approach with some success for finding numerical solutions to
two dimensional problems in elasticity is the use of finite differ-
ences. Southiyell [3] was the first to do this successfully by using
a relaxation technique. More recently ziethods using block relaxation
and direct solution of the system of difference equations have been
used (4, 5, 6, 79 8]'.

In this paper, a direct solution for the system of difference
equations is used. Special handling of the coefficient matrix in
the coMn)utation routine makcts possible the handling of very large
systems of equations.
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lIlAIWE~'1,01hýNI or EQUATIONS.,

The differential equations governing the behavior of a gun tube
are developed in terms of the radial and axial displacement which are
designated u and w rcspectively.

9 The equations of equilibrium for circular symmetry in terms of
stress and with no body forces are: [10O

r 3% + + 0 r- (1)
Sar az r

E r------z + -_z + Trz (2)

ar 3z r

Figure 1 show¢s a cross-section of a typical tube with pressure
loading. The coordinate axis and stress notations are given.

The stress strain relations are assumed to be linear And are

given by hlookes law.

Or - e + 2Ccr (3 + 2C)A

_8 - )e + 2Cc 0 - (3 + 2C)A (3)

Oz- e + 2GWe - (3X + 2G)A

T • Cyrz
Trz

where T

A- fo(0)dOCTo

X and C are Lame constants and a is the coefficient of linear
expansion. Each is assumed to be temperature dependent. TD and T
are the initial and current temperatures respectively.

The strains are defined in terms of displacements by,

Cr ir Ce - Ur Cz -1zw +

a r r a
•rz - 3u + aw, e - Cr + EO (4)

5z Tr

Dimensionless variables are defined by the expressions

u au
w- aw

z br. 0 7nl7 (5)
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- where to depends on the bore radius, a is a characteristic radius

and b the length of the tube. Equations (3), (4) and (5) are
substituted into equations (1) and (2). The following two equationsr in Z and P are obtained.

aA + C + 1 + a ax--
b A + 2C 3)an b(X + 2G) a 4t a b" + 2G) 3&

1W:( + 92c) _+ a2 C ( ;2U)

+ x

3n_____ 3C7 (X + 2C) iW2T + +2C

+ k +Z.mi+~ IM 2: + +

1 1 ax I 2Gý 1 .... L. ((3X + 2G)A]
-+2G A +2C, a&

C a2;C a2 2Z

Ea 1 aA + a 3
b(X + 20) an atn + 20) 3 (A+2)A

Equations (6) and (7), must be satisfied throughout the tube and
are solved subject to the appropriate conditions on the boundary.

2FINIT( DIFFERECE (NALOG

The finite difference analog for the differential equations (6)
Sand (7) is obtained by replacing derivatives with finite differenceS~approximations, To minimize the truncation error, a central

difference approximation Is used throughout. The dimensionless
Sspacing on t is h - 1/1, and on n it is k - 1/N. The first,
second and cross derivatives at a nodal point (I, J) in the open
Sregion of the tube cross section are:

_ i~l
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2k I Uj+1

D2 u ; ( ±ij+i - + ui,jlI) (9)

2 4hk

+ Ui-,j-i) (10)

If approxitiations of the form in equations (8), (9) and (10) are
substituted into equations (6) and (7), two algebraic equations of
the following fortm are obtained for each nodal point within the

region.

Clk :i-lJ-1 + C2,k ui-l,j-I + C3 .1, Oi-lj + C4,k ui-lj

S+ C5,k ;i-lj+l + C6,k !i-l,jJ+ + C7,k :i,j-l + CBk ui,j-1

+ C 9 ,k wi,j + ClO,k Ui,j + Cll,k wi,J+l + Cl2,k ui,j+l

+ C13 ,k wi+l,j-l + C14 ,k ui+lJ-1 + Cl5,k i+l,j

S+ C16,k ui+l,j + C17,k 'ýi+l,j+l + C1 8 ,h ui+l,j+l

C1 9 ,k k , 2 (11)

where the coefficients Cik are functions of material properties,

and will, because of their dependence on temperature, be functions
of position. In the solution of the problem the material properties
are approximated by polynomials in temperature and their derivatives
with respect to the space variables are obtained by using a central
difference approximation.

The set of equations (11) will be equal in number to twice the
number of nodal points within the region. The equations will
include values of Z and i at each of the nodal points inside the
region and also values of U and Z4 at nodal points on the boundary
line surrounding the region. At each nodal point on the boundary
line, two algebraic equations which express the boundary conditions
in finite difference form are written. When combined with equations
(11) for the interior a solvable set of simultaneous equations in
discrete values of U and Z are obtained.

BOUNDARY EQUATIONS:

Conditions at each nodal point along the boundary will be in the
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form of stress or displacemnent, and in sonte Instances it miay be
.poxh1v to define. n line of aym.etry that can form a boundary line.
Boundary equations are generated for each type of condition and the

Sprogram is written so that at each boundary point any one of the
three conditions can be prescribed.

To best acconri-odate the three possible conditions at the
boundary tihe nodal spacing is chosen so that the actual boundary of
the region always lies midway between nodal lines, as illustrated by
figure 2. Two boundary equations must be written for each of the
nodal points on the outer perimeter. The nature of the equations
will be such as to describe the condition at the boundary that is
closest to the nodal point. Examples chosen from the bottom side of
the region (showIiV fL igure 2) will be illu-PtrntLd. Suppose first
that displacements at the nodal line i along the bottom boundary are
given and are denoted by u and w Then from the central difference
app roximat ion,

.8i2 (12a)_2" (L', + 'ýi,2) "wi(1 )

2 (A il +ui 2 ) " ui (12b)

If the stresses at the bound iry corresponding to the ith nodal line
are given, then from equatio|is (3) and (4)

--+ E + + - (3X + 2G)A Or (13a)
r 1 0

+W + L r (13b)St~~r + , r-

The following difference equations follow,

F+
E ~ ~ ~ (Zi+1,2 Z-1w~. 2 -i.ll+ ':4+1,l) + (

a 1
x (ui,2- i,-l) + 2 (uil + ui, 2 ) " i +

(+ A (14a)

f "b-- (•i+I,2 +hi+ll - ui-1, 2 -i-l,l) + x

Trz
(1#2 " Wil) (14b)
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The syn-mietry condition along a boundary is given bj a mirror reflec-
tion in that boundary. For the point at the aih nodal line along
the bottom boundary

i -W 0o (15a)1,2

- + i 1 0 (15b)

Sets of equations similar to equations (12), (14) or (15) are
written for each point along the nodal boundary line. An exception
occurs for a corner point when displacement or stress is prescribed
at the corner. For displacement given at a corner, the boundary
equation 4c obtained by setting the displacement equal to the
average of the four neighboring points. A stress cundition at a
corner is handled by prescribing the stiess oil the slant surface of
a triangular section with- sides h/2 by h"/2 as illustrated in figure
3. Stresses on and T are written in termis of the boundary
streuses which are in turn approximated by finite differences.
An interior corner such as shown in figure 4 is handled by
requiring the normal stress on each boundary be satisfied. The
shear stress in the corner is ignored. Each boundary equation is
of a form that can be written in the general forni of equation (11).
Thus all equations of the region and the boundary can be written
in the format of equatior. (11). Two equations are written at each
nodal point, be it interior or boundary point, and this defines a
system of algebraic equations that is equal in number to the
number of discrete values of u and w.

SOLUTION OF ALGEBRAIC SYSTEM

The system of algebraic equations is arranged in an order

prescribed by varying j aid then i, i.e., the first two equations
of the set are written for the nodal point at (1, 1), the next two
for (1, 2) etc. Equations for points on nodal line i will
in general involve points on nodal lines at I - 1 and i + 1. Thus,
the equations arranged in the above order leads to a banded
coefficient matrix on the unknowns u and w. For executing the
solution of this system on a digital computer the matrix is
partitioned on the basis of values of i. Then, in ali elimination
sequence, it is possible to deal only with the three consecutive
sub matrices that correspo|dsto equations for points on the nodal
lines i - 1, 1, and i + 1. These matrices are brought into core,
the elimination operations performed and then the core updated for
the next elimination sequence. This enables a computer with
limited core capacity to handle very large systems without great
sacrifice la time for loading and unloading core. It also has
the effect of limiting only the nodal spacing in the radial
direction and giving the capacity for very large spacing in the
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axial or z directions. For the IBM 7044 system with 32k core
memory and unlimited disk storage, a system with 30 nodal lines
in the radial direction, two equations for each point, and any
number in the axial direction can be handled.,

E The computational sequence is handled in three independent
steps. First the coefficient matrix is generated. This involves
computing the cofficients Cik for each of the equations in the set
and storing them in a way to take advantage of the relatively narrow
band width of the matrix. Next, the equations are solved for the
unknown values of t and r by Gaussian elimination. The elimination
routine'is carried out with only a portion of the coefficient
matrix in core at any time, c

Finally with the displacementsknown, a separate programS•uvalti..•vs the stresses by using central difference approximations•

for the strains.

NUMIR•.CAL EXAIMLE:

The problem chosen for sample computation is a 301.1N gun tube
of very light weight design. Internal pressures are not high but
the light weight barrel gets hot very quickly in a sustained
burst and there is real danger of catastrophic failure. A sketch
of a cross-section of the tube is given in figure 1.

The physical properties of the barrel are given below
for ambient temperature. These have been taken as constants for
the results reported here.

S- 1.15 x 107 psi

SC - 1.73 x 107 psi

a - 6.0 x 10-6 in/in/OF

Computations have been made for the following cases.

1. Tube at ambient temperature with internal pressure of:

a. 6000 psi (projectile at 21")

b. 3700 psi (projectile at 36")

2. Tube at 8 milliseconds after the 20th round is fired
with internal pressure of:

a. 6000 psi

b. 3700 psi

F . .

V i .. . . .. . . . . . . . _ _... . .... . ..
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The transient temperature used for cases 2 (a) and (h) is
given in figure 5.

tesults of the stress computations are given in fiures 5, 7,
and 8. Figure 6 is a plot of the three normal stresses versus
radius for cases (Ia) and (2a) at a spot 21" from the breech.
Figure 7 shows results for cases (Ib) and (ic) at 29" from the
breech. Conditions at different positions along the barrel are
similar in general forte but will differ in magnitude. This is
illustrated in figure 8 where the tangential stress is plotted
against distance from the breech for cases (Ia) and (2a).

In general, the results are as expected. Fur the case of
amblent tempcrature, the values are very nearly the same as given
by the classical theory. For the transient temperature condition,
numerical values have not been chec';ed against other methods of
calculation but the general trend of the tangential stress seems
correct. Perhaps less expected is the very high axial stress in
the tube shown by oa in the curves.
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